Super-Brownian motion: L-convergence of martingales through the pathwise spine decomposition

نویسندگان

  • A. E. Kyprianou
  • Sergei Kuznetsov
چکیده

Evans [7] described the semi-group of a superprocess with quadratic branching mechanism under a martingale change of measure in terms of the semi-group of an immortal particle and the semigroup of the superprocess prior to the change of measure. This result, commonly referred to as the spine decomposition, alludes to a pathwise decomposition in which independent copies of the original process ‘immigrate’ along the path of the immortal particle. For branching particle diffusions the analogue of this decomposition has already been demonstrated in the pathwise sense, see for example [11, 10]. The purpose of this short note is to exemplify a new pathwise spine decomposition for supercritical super-Brownian motion with general branching mechanism (cf. [13]) by studying Lp convergence of naturally underlying additive martingales in the spirit of analogous arguments for branching particle diffusions due to Harris and Hardy [10]. Amongst other ingredients, the Dynkin-Kuznetsov N-measure plays a pivotal role in the analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Application of the Backbone Decomposition to Supercritical Super-Brownian Motion with a Barrier

We analyse the behaviour of supercritical super-Brownian motion with a barrier through the pathwise backbone embedding of Berestycki, Kyprianou and Murillo-Salas (2011). In particular, by considering existing results for branching Brownian motion due to Harris and Kyprianou (2006) and Maillard (2011), we obtain, with relative ease, conclusions regarding the growth in the right-most point in the...

متن کامل

Spine proofs for Lp-convergence of branching-diffusion martingales∗

Using the foundations laid down in Hardy and Harris [17], we present new spine proofs of the Lp-convergence (p ≥ 1) of some key ‘additive’ martingales for three distinct models of branching diffusions, including new results for a multi-type branching Brownian motion and discussion of left-most particle speeds. The spine techniques we develop give clear and simple arguments in the spirit of the ...

متن کامل

Brownian Motion and Stochastic Calculus

This note is about Doob decomposition and the basics of Square integrable martingales Contents 1 Doob-Meyer Decomposition 1 2 Square Integrable Martingales 4 Brownian Motion and Stochastic Calculus Continuout Time Submartingales Usually it’s su¢ ce to only discuss submartingales by symmetry in de…nition and techniques are the same. 1 Doob-Meyer Decomposition Doob-meyer decomposition clears the ...

متن کامل

The Rate of Convergence of Euler Approximations for Solutions of Stochastic Differential Equations Driven by Fractional Brownian Motion

The paper focuses on discrete-type approximations of solutions to non-homogeneous stochastic differential equations (SDEs) involving fractional Brownian motion (fBm). We prove that the rate of convergence for Euler approximations of solutions of pathwise SDEs driven by fBm with Hurst index H > 1/2 can be estimated by O(δ) (δ is the diameter of partition). For discrete-time approximations of Sko...

متن کامل

Scaling limits for critical inhomogeneous random graphs with finite third moments∗

We identify the scaling limit for the sizes of the largest components at criticality for inhomogeneous random graphs with weights that have finite third moments. We show that the sizes of the (rescaled) components converge to the excursion lengths of an inhomogeneous Brownian motion, which extends results of Aldous [1] for the critical behavior of Erdős-Rényi random graphs. We rely heavily on m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011